About 507,000 results
Open links in new tab
  1. regression - When is R squared negative? - Cross Validated

    Also, for OLS regression, R^2 is the squared correlation between the predicted and the observed values. Hence, it must be non-negative. For simple OLS regression with one predictor, this is …

  2. regression - Trying to understand the fitted vs residual plot?

    Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is …

  3. regression - Converting standardized betas back to original …

    I have a problem where I need to standardize the variables run the (ridge regression) to calculate the ridge estimates of the betas. I then need to convert these back to the original variables scale.

  4. How to derive the standard error of linear regression coefficient

    another way of thinking about the n-2 df is that it's because we use 2 means to estimate the slope coefficient (the mean of Y and X) df from Wikipedia: "...In general, the degrees of freedom of …

  5. Interpreting Z-Scores of Linear Regression Coefficients

    Jul 11, 2022 · Well, under the hypothetical scenario that the true regression coefficient is equal to 0, statisticians have figured out how likely a given Z-score is (using the normal distribution …

  6. regression - Linear model with both additive and multiplicative …

    Sep 23, 2020 · In a log-level regression, the independent variables have an additive effect on the log-transformed response and a multiplicative effect on the original untransformed response:

  7. correlation - What is the difference between linear regression on y ...

    The Pearson correlation coefficient of x and y is the same, whether you compute pearson(x, y) or pearson(y, x). This suggests that doing a linear regression of y given x or x given y should be …

  8. Sample size for logistic regression? - Cross Validated

    Sample size calculation for logistic regression is a complex problem, but based on the work of Peduzzi et al. (1996) the following guideline for a minimum number of cases to include in your …

  9. regression - Difference between forecast and prediction ... - Cross ...

    I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems …

  10. Regression - What to do with insignificant variables? [duplicate]

    Sep 2, 2015 · So, instead of having 50 independent variables, we'll have 42 independent variables (42 Beta coefficients + 1 for constant). Or do we need to remove one of these …